H=CCSDS
The Consultative Committee for Space Data Systems

Draft Recommendation for
Space Data System Standards

THE DATA DESCRIPTION

LANGUAGE EAST
SPECIFICATION

(CCSD0010)

DRAFT RECOMMENDED STANDARD

CCSDS 644.0-P-2.1

PINK SHEETS
February 2007

DRAFT CCSDS RECOMMENDATON RECOMMENDED STANDARD FOR EAST SPECIFICATION

3.2 LOGICAL DESCRIPTION

The logical part of an EAST DDR is composed of:

— the logical description of the models of data (using type and subtype declarations for
the syntactic definition of the data, and using representation clauses for the
specification of their size in bits and their location within the set of data);

— the declaration of the data occurrences, i.e., the declaration of the described data
items (using object declarations).

The logical part of the Data Description Record consists of a package. This unit is
introduced by the keyword package, followed by the package name, and ends with ‘end
package name;’. The package name is an identifier (see 3.1.3).

Types are models, and objects are instances (or occurrences) of these models. Type
declarations describe therefore the structure of the data elements which may occur in the
described data, while the actual data occurrences are represented by the declaration of
variables and constants.

A type (except predefined type), a subtype or a constant (except predefined constant) must be
declared in the package before being used.

The declaration of variables must occur in the latter section of the logical description.
Constants may be declared in the type declaration section or in the section for the declaration
of variables: in the first section, they contribute to data models definition, while they
represent data occurrences in the second section.

The described data is a concatenation of elements in the order of the corresponding variables.
The types used in the declaration of variables must have been previously declared in the
package.

CCSDS 644.0-BP-2.1 Page 3-7 November2000February 2007

DRAFT CCSDS RECOMMENDATHON RECOMMENDED STANDARD FOR EAST SPECIFICATION

Figure 3-13 summarizes the content of the logical part of a DDR.

package logical_package _name is

Section for the Declaration of Types: Definition of the Data Models

- type declarations and representation clauses (see 3.2.1 and 3.2.4)
- subtype and constant declarations (see 3.2.2 and 3.2.3.2)

Section for the Declaration of VVariables: Definition of the Data Occurrences

- variable and constant declarations (see 3.2.3.1 and 3.2.3.2)
- actual values of discriminant (see 3.2.1.6)

end logical_package _name ;

Figure 3-13: Logical Part Structure

3.21 TYPE DECLARATIONS

The type is characterized by a set of permissible values. Several classes of types exist:
scalar types (enumeration types, integer types, and real types), array types, and record types.
Some types are EAST predefined types (see 3.2.1.1); the other types are user defined types
and must be declared according to a specific syntax (see 3.2.1.2, 3.2.1.3, 3.2.1.4, 3.2.1.5 and
3.2.1.6).

3.2.1.1 Predefined Types

There are three predefined types provided by the EAST language: CHARACTER, STRING
and EOF. Predefined means that no previous declaration has to be made explicitly by the
user to use one of these types.

The predefined type CHARACTER is an enumeration type (see next subsection for the
enumeration definition syntax rules), whose values are the 256 characters of the 8-bit coded
Latin Alphabet No. 1. character set (see annex B and reference [1]).

The values of the predefined type STRING are one-dimensional arrays of the predefined type
CHARACTER, indexed by values in increments of one of any positive integer type.

CCSDS 644.0-BP-2.1 Page 3-8 November2000February 2007

DRAFT CCSDS RECOMMENDATON RECOMMENDED STANDARD FOR EAST SPECIFICATION

An index is specified as follows in figure 3-19:

Discrete Type
Identifier

Y

Enumeration
Literal

N\
7
Index
er L. = — Discrete Discrete
Specification
\, Conctant \, Conctant
N~ 7 Vd CUTTOTATTU v CUTTIOATTUO
_ ldentifier J _ ldentifier J

Enumeration
Literal

\%

Index
Specification

Discrete type
Identifier

—> Constant 1—

| Literal -

Discrete

Identifier

)

Enumeration
Literal

—

N
Integer

Discrete
Constant -

Identifier

)
Enumeration

Literal
—

N
Integer
Literal ||

In the “..” notation, the first identifier or literal specifies the lower bound, while the second

Figure 3-19: Index Specification Diagram

one specifies the upper bound.

The ‘range <>’ expression denotes an undetermined number of elements.

CCSDS 644.0-BP-2.1

Page 3-13

DRAFT CCSDS RECOMMENDATHON RECOMMENDED STANDARD FOR EAST SPECIFICATION

where a component declaration is specified as in figure 3-21:

Type
Identifier

Index

Component Component
Identifier

Declaration Constraint

Constant

Declaration

N
Component o Component Type (Index L >
Declaration T Identifier Identifier L Constraint

J
Constant %_()

The optional default value is the one to be given automatically if no other value is given by I

CCSDS 644.0-BP-2.1 Page 3-16 November2000February 2007 l

DRAFT CCSDS RECOMMENDATON RECOMMENDED STANDARD FOR EAST SPECIFICATION

Elementary —
Value
Default . Array O
Value v Value

) S —
| Constant

Identifier
-

S —
Elementary Enumeration
Value = literal O
-

/—
Real

] Literal
-
) EEE—
- Integer
Literal
-
/—
L String
(Mono-dimension h Literal
Array N J
Value

\ Y
Array (" Multi-dimension)
Value = Array O
Value
\ Y

(Multi-dimension h
Array
Value

N\ J :
(Mono-dimension h /ﬁ\
Value) Value

Array
Value

CCSDS 644.0-BP-2.1 Page 3-17 November2000February 2007

DRAFT CCSDS RECOMMENDATON RECOMMENDED STANDARD FOR EAST SPECIFICATION

'R
>/
Discrete Type or Subtype
Identifier
Index |.._ Y Y EEE— N\
Constraint—|— (Discrete Discrete)"
k—) Constant Constant
Identifier Identifier
.)
Enumeration| Enumeration
Literal Literal
~— ~— O

-

Index
Constraint “=

()
\/

Discrete type or Subtype]

Identifier

Discrete

Constant
Identifier

R
Enumeration

Literal

Discrete
Constant L
Identifier

R
Enumeration
Literal L

~—

)
Integer

Literal | |

Figure 3-23: Index Constraint Diagram

CCSDS 644.0-BP-2.1

Page 3-19

DRAFT CCSDS RECOMMENDATHON RECOMMENDED STANDARD FOR EAST SPECIFICATION

The following example presents two record type definitions that consist only of simple
component declarations:

type COMPLEX is record
REAL_PART: REAL,;
IMAGINARY_PART: REAL,;
end record;
-- REAL is a real type defined in 3.2.1.4 as:
-- type REAL is digits 15;
type MEASUREMENT_BLOCK is record

end record;

-- DAY is an enumeration type defined in 3.2.1.2 as:

-- type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);

-- SMALL_INTEGER is an integer type defined in 3.2.1.3 as:
-- type SMALL_INTEGER is range -10 .. 10;

-- VECTOR is an array type defined in 3.2.1.5 as:

-- type VECTOR is array (NUMBER range <>) of REAL;

Example 3-8: Record Type Definitions

Some records may contain components of which the size or even the existence depends on
the value of another component, called a discriminant. The type of a discriminant must be
discrete. Figure 3-24 illustrates the syntax of a discriminant specification.

N\

Type
Identifier

Figure 3-24: Discriminant Specification Diagram

CCSDS 644.0-BP-2.1 Page 3-20 November2000February 2007

DRAFT CCSDS RECOMMENDATHON RECOMMENDED STANDARD FOR EAST SPECIFICATION

-- structuring types
type DATA_ARRAY is array (NUMBER range <>) of OCTET;
type SECONDARY_HEADER_TYPE is array (1 .. 4) of OCTET,;

type PRIMARY_HEADER_TYPE is record
PACKET_IDENTIFICATION: PACKET_IDENTIFICATION_TYPE;
PACKET_SEQUENCE_CONTROL: PACKET_SEQUENCE_CONTROL_TYPE;
SOURCE_DATA_LENGTH: NUMBER,;

end record,

type PACKET_FORMAT_TYPE(
VIRTUAL_SECONDARY_HEADER_FLAG: PRESENCE_FLAG := PRESENT;
-- point to the secondary header flag located in the first branch
VIRTUAL_SOURCE_DATA_LENGTH: NUMBER := 256)
-- point to the source data length located in the third branch
is record
PRIMARY_HEADER: PRIMARY_HEADER_TYPE;
case VIRTUAL_SECONDARY_HEADER_FLAG is
when ABSENT =>
SOURCE_DATA_0: DATA_ARRAY (1 .. VIRTUAL_SOURCE_DATA_LENGTH);
when PRESENT =>
SECONDARY_HEADER: SECONDARY_HEADER_TYPE;
SOURCE_DATA_1: DATA_ARRAY (1 .. VIRTUAL_SOURCE_DATA_LENGTH);
end case;
end record;

FLAG : PRESENCE_FLAG;

Example 3-11: Logical Description of the Packet Format

The two virtual discriminants ‘VIRTUAL _SECONDARY_HEADER_FLAG’ and
‘VIRTUAL_SOURCE_DATA _LENGTH’ do not really exist in the exchanged data block.
They serve as a link between other data:

— VIRTUAL_SECONDARY_HEADER_FLAG is supposed to have the value of the
SECONDARY_HEADER_FLAG field in the PACKET IDENTIFICATION block;
it conditions the existence of the SECONDARY_HEADER block. It serves as a link
between these two fields.

CCSDS 644.0-BP-2.1 Page 3-26 November2000February 2007

DRAFT CCSDS RECOMMENDATON RECOMMENDED STANDARD FOR EAST SPECIFICATION

— VIRTUAL_SOURCE_DATA_LENGTH is supposed to have the value of the
SOURCE_DATA LENGTH field in the PRIMARY HEADER; it conditions the size
of the SOURCE DATA block. It also serves as a link.

CCSDS 644.0-BP-2.1 Page 3-27 November2000February 2007 I

DRAFT CCSDS RECOMMENDATHON RECOMMENDED STANDARD FOR EAST SPECIFICATION

Actual
Discriminant | .._| EAST path
Value

NOTES

1 Function returns a value compliant with type identifier computed using predefined
operators applied to values designated by their complete EAS T path.

2 The EAST path is built using the name of each hierarchy level from the top to the
designated item.

CCSDS 644.0-BP-2.1 Page 3-28 November2000February 2007

DRAFT CCSDS RECOMMENDATON RECOMMENDED STANDARD FOR EAST SPECIFICATION

3.2.3 OBJECT DECLARATIONS

An object is an entity that contains a value of a given type. A declared object is called a
constant if the reserved word constant appears in the object declaration. An object that is
not a constant is called a variable.

3.2.3.1 Declaration of Variables

The declaration of a variable uses the previous type, subtype, or constant declarations.
Variables correspond to the data that are to be exchanged. Figure 3-33 illustrates the syntax
for the declaration of a variable.

Variable | .._ | Variable (Y Type @

Declaration | Identifier Identifier

Variable . Variable Type Default
Declaration T Identifier Identifier Value

A variable declaration consists of only one identifier (the variable identifier) followed by the
identifier of the type that describes the corresponding data.

UPDATED _DATA: MEASUREMENT BLOCK;
-- MEASUREMENT_BLOCK is a record type defined in 3.2.1.6
INSTRUMENT_STATUS : STATE := ON;

Example 3-16: Variable Declaration

CCSDS 644.0-BP-2.1 Page 3-33 November2000February 2007 l

DRAFT CCSDS RECOMMENDATHON RECOMMENDED STANDARD FOR EAST SPECIFICATION

Second Record

Number Year Vector (1 .. Number) Month Day
(8 bits) (16 bits) (?) (8 bits) (8 bits)

Figure 3-40: Second Tree Structure

The number of measurements is not known at definition time. The size of the vector of
measurements is therefore not provided. The tree structure is described using the following
declarations:

type SECOND_RECORD(THE_NUMBER: NUMBER :=1) is record
THE_YEAR: YEAR,;
THE_MEASUREMENT: VECTOR(1 .. THE_NUMBER);
THE_MONTH: MONTH,;
THE_DAY_OF_MONTH: DAY;
end record;
for SECOND_RECORD use record
THE_NUMBER at 0 range 0 .. 7;
THE_YEAR at 0 range 8 .. 23;
-- no component clause for THE_ MEASUREMENT,
-- for THE_MONTH nor for THE_DAY_OF_MONTH
end record;
-- no length clause for SECOND_RECORD type

Example 3-27: Incomplete Record Representation Clause Declaration

In this example, the length of ‘THE_MEASUREMENT’ depends on the value of the
discriminant ‘“THE_NUMBER’. No representation clause can be given for it. Nevertheless the
size is determined by the expression ‘THE_NUMBER times 32’, 32 being the size of the basic
element VALUE. The component ‘THE_MEASUREMENT’ begins at bit 24. The length of
‘THE_MONTH?’ is known but its location is not known at definition time. No representation
clause can be given for it. The component ‘THE_MONTH’ begins after the end of
‘THE_MEASUREMENT’. In the same way, the length of ‘the_day of month’ is known, but
its location is not known at definition time. No representation clause can be given for it. The
component ‘THE_DAY_OF _MONTH? begins after the end of “THE_MONTH’.

CCSDS 644.0-BP-2.1 Page 3-44 November2000February 2007

DRAFT CCSDS RECOMMENDATHON RECOMMENDED STANDARD FOR EAST SPECIFICATION

The actual representation of the numerics is given by the declaration of constants of the
previous record types (INTEGER_PHYSICAL_DESCRIPTION for the representation of
integers and REAL_PHYSICAL_DESCRIPTION for the representation of reals).

The actual representation of a numeric is therefore provided by a record value (i.e., the value
of the constant of the relevant record type: INTEGER_PHYSICAL_DESCRIPTION or
REAL_PHYSICAL_DESCRIPTION).

Figure 3-44 illustrates the syntax of a record value.

7

Component

Record o () ;
Value "

Figure 3-44: Record Value Specification Diagram

In the case of the record types used in the physical part of an EAST description, the

—
__| Elementary

Value
-

EEE—
Component Record
Value = Value O
-

S
Array

— Value

CCSDS 644.0-BP-2.1 Page 3-56 November2000February 2007

DRAFT CCSDS RECOMMENDATON RECOMMENDED STANDARD FOR EAST SPECIFICATION

4 RESERVED KEYWORDS

The following reserved keywords are not available for use as declared identifiers. Some of
them are reserved keywords of the Ada programming language (see reference [E3]), but not
of the EAST language. These words are also reserved in order to avoid any problem in the
case of an Ada application accessing the data. Other words are reserved identifiers of the

EAST language and not of the Ada programming language.

a) EAST and Ada Keywords

array digits
at

end
case
constant for

b) Other Ada Keywords

abort delta
abs do
abstract
accept else
access elsif
aliased entry
all exception
and exit
begin function
body

generic
declare goto
delay

c) Pure EAST reserved identifiers

virtual ... word_32_bits

null

of
others

if
in

limited
loop

mod

new
not

or
out

package

range
record

subtype

pragma
private
procedure
protected

raise
rem
renames
requeue
return
reverse

select
separate

type
use

when

tagged
task
terminate
then

until

while
with

Xor

NOTE - Any identifier beginning with ‘virtual > is reserved for virtual component

identifier only.

CCSDS 644.0-BP-2.1

Page 4-1

DRAFT CCSDS RECOMMENDATHON RECOMMENDED STANDARD FOR EAST SPECIFICATION

In Ada, a pragma is used to convey information to Ada compilers. As such, pragma use is
not justified in EAST.

D2 ADASYNTAX ELEMENTS THAT HAVE A DIFFERENT MEANING IN EAST
A length clause is defined by the following declaration:
for type_identifier'size use static_expression ;

In Ada, the value of the expression specifies an upper bound for the number of bits to be
allocated to objects of the given type. In EAST, the expression specifies the exact number of
bits that any object of the given type occupies.

In Ada, a record representation clause specifies the storage representation of records in
memory, that is, the order, position, and size of record components in memory of a given
machine. In EAST, the record representation clause specifies the actual storage
representation on the medium.

D3 EAST SYNTAX RESTRICTIONS VS. ADA

In Ada, the base for based numeric literals can be any number between 2 and 16. In EAST
the base can only be 2, 8 or 16.

In Ada the values specified in a range constraint within an integer or real type definition can
be a simple_expression. -EAST-the-values-may-only-be-a-numeric-titeral-or-an-identifier
Raming-an-appropriate-numeric-eonstant:In EAST the values may only be a numeric literal or

In Ada, a constant declaration allows a list of identifiers. EAST allows only a single identifier.

CCSDS 644.0-BP-2.1 Page D-2 November2000February 2007

